Use BFS approach for win simulation, not DFS
The original approach here was using depth-limited depth first search, which was a hacky workaround to avoid exploring a single branch too deeply. A much saner approach is to just explore in a breadth-first manner. This also completely negates the need for depth limitations and we can instead let the algorithm run until it either finishes or hits the time limit, as we always want to explore as much depth as we can, without it slowing down the responsiveness of the UI.
This commit is contained in:
parent
7cc52f272d
commit
b209fbc94b
|
@ -1,5 +1,6 @@
|
||||||
#include "gamestate.h"
|
#include "gamestate.h"
|
||||||
#include <QDebug>
|
#include <QDebug>
|
||||||
|
#include <QQueue>
|
||||||
#include <QSet>
|
#include <QSet>
|
||||||
#include <qlist.h>
|
#include <qlist.h>
|
||||||
#include <qqmllist.h>
|
#include <qqmllist.h>
|
||||||
|
@ -616,149 +617,180 @@ void GameState::ensureColumnRevealed(int columnId) {
|
||||||
qDebug() << "Revealed card " << col->card()->toString() << " in column " << columnId;
|
qDebug() << "Revealed card " << col->card()->toString() << " in column " << columnId;
|
||||||
}
|
}
|
||||||
|
|
||||||
std::optional<bool> GameState::canWinThroughSimulation(QSet<QString>& visitedStates, QElapsedTimer timer, int depth) const {
|
std::pair<std::optional<bool>, int> GameState::canWinThroughSimulation(QSet<QString>& visitedStates, QElapsedTimer timer) const {
|
||||||
// Check if the game is already won
|
|
||||||
if (m_gameWon)
|
if (m_gameWon)
|
||||||
return true;
|
return std::make_pair(true, 0); // Already won at depth 0
|
||||||
|
|
||||||
// Limit evaluation time (ensures this doesn't block the game)
|
// Go over all possible moves using BFS
|
||||||
if (timer.hasExpired(MAX_EVAL_TIME))
|
|
||||||
return std::nullopt;
|
|
||||||
|
|
||||||
// Limit depth (ensures we don't spend all eval time looking at a single branch.)
|
QQueue<std::pair<GameState*, int>> stateQueue; // BFS queue (game state, depth)
|
||||||
// Note that it might be a good idea to switch to a BFS type search, instead of depth
|
|
||||||
// limiting DFS.
|
|
||||||
if (depth > MAX_DEPTH)
|
|
||||||
return std::nullopt;
|
|
||||||
|
|
||||||
// Generate the current state hash
|
// Clone the current state as the root of BFS
|
||||||
QString currentStateHash = generateStateHash();
|
GameState* initialState = this->clone();
|
||||||
|
stateQueue.enqueue({initialState, 0});
|
||||||
|
visitedStates.insert(initialState->generateStateHash());
|
||||||
|
|
||||||
// Check if the state has already been explored
|
int lastDepth = 0;
|
||||||
if (visitedStates.contains(currentStateHash))
|
while (!stateQueue.isEmpty()) {
|
||||||
return false;
|
auto [currentState, depth] = stateQueue.dequeue();
|
||||||
|
auto currentHash = currentState->generateStateHash();
|
||||||
|
lastDepth = depth;
|
||||||
|
|
||||||
// Mark the current state as visited
|
// Limit evaluation time (ensures this doesn't block the game)
|
||||||
visitedStates.insert(currentStateHash);
|
if (timer.hasExpired(MAX_EVAL_TIME)) {
|
||||||
|
delete currentState;
|
||||||
// Simulate column moves to the foundation
|
return std::make_pair(std::nullopt, depth);
|
||||||
for (int columnId = 0; columnId < m_columns.size(); ++columnId) {
|
|
||||||
const auto& columnStack = m_columns[columnId];
|
|
||||||
if (columnStack.isEmpty())
|
|
||||||
continue;
|
|
||||||
|
|
||||||
const ColumnSlot* topSlot = columnStack.last();
|
|
||||||
for (int foundationId = 0; foundationId < m_foundation.size(); ++foundationId) {
|
|
||||||
if (!isFoundationMoveValid(*topSlot->card(), foundationId))
|
|
||||||
continue;
|
|
||||||
|
|
||||||
GameState* clonedState = this->clone();
|
|
||||||
assert(clonedState->moveColumnCardToFoundation(columnId, foundationId));
|
|
||||||
assert(clonedState->generateStateHash() != generateStateHash());
|
|
||||||
|
|
||||||
auto res = clonedState->canWinThroughSimulation(visitedStates, timer, depth + 1);
|
|
||||||
delete clonedState;
|
|
||||||
|
|
||||||
if (res.value_or(false))
|
|
||||||
return true;
|
|
||||||
if (!res.has_value())
|
|
||||||
return std::nullopt;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Simulate throwaway pile moves
|
|
||||||
if (!m_throwawayPile.isEmpty()) {
|
|
||||||
const PlayingCard* topCard = m_throwawayPile.last();
|
|
||||||
|
|
||||||
// Move to foundation
|
|
||||||
for (int foundationId = 0; foundationId < m_foundation.size(); ++foundationId) {
|
|
||||||
if (!isFoundationMoveValid(*topCard, foundationId))
|
|
||||||
continue;
|
|
||||||
|
|
||||||
GameState* clonedState = this->clone();
|
|
||||||
assert(clonedState->moveThrownCardToFoundation(foundationId));
|
|
||||||
assert(clonedState->generateStateHash() != generateStateHash());
|
|
||||||
|
|
||||||
auto res = clonedState->canWinThroughSimulation(visitedStates, timer, depth + 1);
|
|
||||||
delete clonedState;
|
|
||||||
|
|
||||||
if (res.value_or(false))
|
|
||||||
return true;
|
|
||||||
if (!res.has_value())
|
|
||||||
return std::nullopt;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// Move to columns
|
// Try moves from columns to foundation
|
||||||
for (int toColumnId = 0; toColumnId < m_columns.size(); ++toColumnId) {
|
for (int columnId = 0; columnId < currentState->m_columns.size(); ++columnId) {
|
||||||
if (!isColumnMoveValid(*topCard, toColumnId))
|
const auto& columnStack = currentState->m_columns[columnId];
|
||||||
|
if (columnStack.isEmpty())
|
||||||
continue;
|
continue;
|
||||||
|
|
||||||
GameState* clonedState = this->clone();
|
const ColumnSlot* topSlot = columnStack.last();
|
||||||
assert(clonedState->moveThrownCardToColumn(toColumnId));
|
for (int foundationId = 0; foundationId < currentState->m_foundation.size(); ++foundationId) {
|
||||||
assert(clonedState->generateStateHash() != generateStateHash());
|
if (!currentState->isFoundationMoveValid(*topSlot->card(), foundationId))
|
||||||
|
|
||||||
auto res = clonedState->canWinThroughSimulation(visitedStates, timer, depth + 1);
|
|
||||||
delete clonedState;
|
|
||||||
|
|
||||||
if (res.value_or(false))
|
|
||||||
return true;
|
|
||||||
if (!res.has_value())
|
|
||||||
return std::nullopt;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Simulate draw pile move
|
|
||||||
// (The condition also handles the case where there's only one card in the throwaway pile,
|
|
||||||
// which means drawing would just result in flipping and re-drawing the same card.)
|
|
||||||
if (!(m_drawPile.isEmpty() && m_throwawayPile.size() <= 1)) {
|
|
||||||
GameState* clonedState = this->clone();
|
|
||||||
assert(clonedState->drawNextCard());
|
|
||||||
assert(clonedState->generateStateHash() != generateStateHash());
|
|
||||||
|
|
||||||
auto res = clonedState->canWinThroughSimulation(visitedStates, timer, depth + 1);
|
|
||||||
delete clonedState;
|
|
||||||
|
|
||||||
if (res.value_or(false))
|
|
||||||
return true;
|
|
||||||
if (!res.has_value())
|
|
||||||
return std::nullopt;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Simulate moves between columns
|
|
||||||
for (int fromColumnId = 0; fromColumnId < m_columns.size(); ++fromColumnId) {
|
|
||||||
const auto& fromColumnStack = m_columns[fromColumnId];
|
|
||||||
if (fromColumnStack.isEmpty())
|
|
||||||
continue;
|
|
||||||
|
|
||||||
for (int toColumnId = 0; toColumnId < m_columns.size(); ++toColumnId) {
|
|
||||||
if (fromColumnId == toColumnId)
|
|
||||||
continue;
|
|
||||||
|
|
||||||
// Try all revealed cards in the column
|
|
||||||
for (int fromCardIndex = 0; fromCardIndex < fromColumnStack.size(); ++fromCardIndex) {
|
|
||||||
const ColumnSlot* fromSlot = fromColumnStack[fromCardIndex];
|
|
||||||
if (!fromSlot->isRevealed())
|
|
||||||
continue;
|
|
||||||
if (!isColumnMoveValid(*fromSlot->card(), toColumnId))
|
|
||||||
continue;
|
continue;
|
||||||
|
|
||||||
GameState* clonedState = this->clone();
|
GameState* newState = currentState->clone();
|
||||||
assert(clonedState->moveColumnCardToColumn(fromColumnId, toColumnId, fromCardIndex));
|
assert(newState->moveColumnCardToFoundation(columnId, foundationId));
|
||||||
assert(clonedState->generateStateHash() != generateStateHash());
|
QString stateHash = newState->generateStateHash();
|
||||||
|
assert(currentHash != stateHash);
|
||||||
|
|
||||||
auto res = clonedState->canWinThroughSimulation(visitedStates, timer, depth + 1);
|
if (newState->m_gameWon) {
|
||||||
delete clonedState;
|
delete newState;
|
||||||
|
delete currentState;
|
||||||
|
return std::make_pair(true, depth + 1); // Return depth if game won
|
||||||
|
}
|
||||||
|
|
||||||
if (res.value_or(false))
|
if (!visitedStates.contains(stateHash)) {
|
||||||
return true;
|
visitedStates.insert(stateHash);
|
||||||
if (!res.has_value())
|
stateQueue.enqueue({newState, depth + 1});
|
||||||
return std::nullopt;
|
} else {
|
||||||
|
delete newState;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Try moves from throwaway pile to foundation/columns
|
||||||
|
if (!currentState->m_throwawayPile.isEmpty()) {
|
||||||
|
const PlayingCard* topCard = currentState->m_throwawayPile.last();
|
||||||
|
|
||||||
|
// Move to foundation
|
||||||
|
for (int foundationId = 0; foundationId < currentState->m_foundation.size(); ++foundationId) {
|
||||||
|
if (!currentState->isFoundationMoveValid(*topCard, foundationId))
|
||||||
|
continue;
|
||||||
|
|
||||||
|
GameState* newState = currentState->clone();
|
||||||
|
assert(newState->moveThrownCardToFoundation(foundationId));
|
||||||
|
QString stateHash = newState->generateStateHash();
|
||||||
|
assert(currentHash != stateHash);
|
||||||
|
|
||||||
|
if (newState->m_gameWon) {
|
||||||
|
delete newState;
|
||||||
|
delete currentState;
|
||||||
|
return std::make_pair(true, depth + 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!visitedStates.contains(stateHash)) {
|
||||||
|
visitedStates.insert(stateHash);
|
||||||
|
stateQueue.enqueue({newState, depth + 1});
|
||||||
|
} else {
|
||||||
|
delete newState;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Move to columns
|
||||||
|
for (int toColumnId = 0; toColumnId < currentState->m_columns.size(); ++toColumnId) {
|
||||||
|
if (!currentState->isColumnMoveValid(*topCard, toColumnId))
|
||||||
|
continue;
|
||||||
|
|
||||||
|
GameState* newState = currentState->clone();
|
||||||
|
assert(newState->moveThrownCardToColumn(toColumnId));
|
||||||
|
QString stateHash = newState->generateStateHash();
|
||||||
|
assert(currentHash != stateHash);
|
||||||
|
|
||||||
|
if (newState->m_gameWon) {
|
||||||
|
delete newState;
|
||||||
|
delete currentState;
|
||||||
|
return std::make_pair(true, depth + 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!visitedStates.contains(stateHash)) {
|
||||||
|
visitedStates.insert(stateHash);
|
||||||
|
stateQueue.enqueue({newState, depth + 1});
|
||||||
|
} else {
|
||||||
|
delete newState;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Try draw pile move
|
||||||
|
// (The condition also handles the case where there's only one card in the throwaway pile,
|
||||||
|
// which means drawing would just result in flipping and re-drawing the same card.)
|
||||||
|
if (!(currentState->m_drawPile.isEmpty() && currentState->m_throwawayPile.size() <= 1)) {
|
||||||
|
GameState* newState = currentState->clone();
|
||||||
|
assert(newState->drawNextCard());
|
||||||
|
QString stateHash = newState->generateStateHash();
|
||||||
|
assert(currentHash != stateHash);
|
||||||
|
|
||||||
|
if (newState->m_gameWon) {
|
||||||
|
delete newState;
|
||||||
|
delete currentState;
|
||||||
|
return std::make_pair(true, depth + 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!visitedStates.contains(stateHash)) {
|
||||||
|
visitedStates.insert(stateHash);
|
||||||
|
stateQueue.enqueue({newState, depth + 1});
|
||||||
|
} else {
|
||||||
|
delete newState;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Try column-to-column moves
|
||||||
|
for (int fromColumnId = 0; fromColumnId < currentState->m_columns.size(); ++fromColumnId) {
|
||||||
|
const auto& fromColumnStack = currentState->m_columns[fromColumnId];
|
||||||
|
if (fromColumnStack.isEmpty())
|
||||||
|
continue;
|
||||||
|
|
||||||
|
for (int toColumnId = 0; toColumnId < currentState->m_columns.size(); ++toColumnId) {
|
||||||
|
if (fromColumnId == toColumnId)
|
||||||
|
continue;
|
||||||
|
|
||||||
|
for (int fromCardIndex = 0; fromCardIndex < fromColumnStack.size(); ++fromCardIndex) {
|
||||||
|
const ColumnSlot* fromSlot = fromColumnStack[fromCardIndex];
|
||||||
|
if (!fromSlot->isRevealed())
|
||||||
|
continue;
|
||||||
|
if (!currentState->isColumnMoveValid(*fromSlot->card(), toColumnId))
|
||||||
|
continue;
|
||||||
|
|
||||||
|
GameState* newState = currentState->clone();
|
||||||
|
assert(newState->moveColumnCardToColumn(fromColumnId, toColumnId, fromCardIndex));
|
||||||
|
QString stateHash = newState->generateStateHash();
|
||||||
|
assert(currentHash != stateHash);
|
||||||
|
|
||||||
|
if (newState->m_gameWon) {
|
||||||
|
delete newState;
|
||||||
|
delete currentState;
|
||||||
|
return std::make_pair(true, depth + 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!visitedStates.contains(stateHash)) {
|
||||||
|
visitedStates.insert(stateHash);
|
||||||
|
stateQueue.enqueue({newState, depth + 1});
|
||||||
|
} else {
|
||||||
|
delete newState;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
delete currentState; // Cleanup current state
|
||||||
}
|
}
|
||||||
|
|
||||||
// No paths lead to a win
|
return std::make_pair(false, lastDepth); // No solution
|
||||||
return false;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
QVariantList GameState::drawPile() const {
|
QVariantList GameState::drawPile() const {
|
||||||
|
@ -797,7 +829,7 @@ bool GameState::gameWon() const {
|
||||||
return m_gameWon;
|
return m_gameWon;
|
||||||
}
|
}
|
||||||
|
|
||||||
std::optional<bool> GameState::isWinnable() const {
|
std::pair<std::optional<bool>, int> GameState::isWinnable() const {
|
||||||
qDebug() << "--- Simulating winning scenario ---";
|
qDebug() << "--- Simulating winning scenario ---";
|
||||||
QElapsedTimer timer;
|
QElapsedTimer timer;
|
||||||
|
|
||||||
|
@ -809,7 +841,7 @@ std::optional<bool> GameState::isWinnable() const {
|
||||||
|
|
||||||
timer.start();
|
timer.start();
|
||||||
QSet<QString> visitedStates;
|
QSet<QString> visitedStates;
|
||||||
std::optional<bool> res = canWinThroughSimulation(visitedStates, timer, 0);
|
std::pair<std::optional<bool>, int> res = canWinThroughSimulation(visitedStates, timer);
|
||||||
qint64 elapsedTime = timer.elapsed();
|
qint64 elapsedTime = timer.elapsed();
|
||||||
|
|
||||||
// Restore the original message handler
|
// Restore the original message handler
|
||||||
|
|
|
@ -12,7 +12,6 @@
|
||||||
|
|
||||||
// Limits for checking winnability
|
// Limits for checking winnability
|
||||||
#define MAX_EVAL_TIME 100 // Evaluation time limit (ms)
|
#define MAX_EVAL_TIME 100 // Evaluation time limit (ms)
|
||||||
#define MAX_DEPTH 100 // Max moves into the future limit
|
|
||||||
|
|
||||||
class GameState : public QObject {
|
class GameState : public QObject {
|
||||||
Q_OBJECT
|
Q_OBJECT
|
||||||
|
@ -39,7 +38,7 @@ class GameState : public QObject {
|
||||||
Q_INVOKABLE void dealCards();
|
Q_INVOKABLE void dealCards();
|
||||||
Q_INVOKABLE void setupWinningDeck();
|
Q_INVOKABLE void setupWinningDeck();
|
||||||
Q_INVOKABLE bool drawNextCard();
|
Q_INVOKABLE bool drawNextCard();
|
||||||
Q_INVOKABLE std::optional<bool> isWinnable() const; // TODO: Implement as Q_PROPERTY instead
|
Q_INVOKABLE std::pair<std::optional<bool>, int> isWinnable() const; // TODO: Implement as Q_PROPERTY instead
|
||||||
|
|
||||||
// Manual moves (from X to Y)
|
// Manual moves (from X to Y)
|
||||||
Q_INVOKABLE bool moveThrownCardToColumn(int columnId);
|
Q_INVOKABLE bool moveThrownCardToColumn(int columnId);
|
||||||
|
@ -80,7 +79,7 @@ class GameState : public QObject {
|
||||||
|
|
||||||
void ensureColumnRevealed(int columnId);
|
void ensureColumnRevealed(int columnId);
|
||||||
|
|
||||||
std::optional<bool> canWinThroughSimulation(QSet<QString>& visitedStates, QElapsedTimer timer, int depth) const;
|
std::pair<std::optional<bool>, int> canWinThroughSimulation(QSet<QString>& visitedStates, QElapsedTimer timer) const;
|
||||||
};
|
};
|
||||||
|
|
||||||
#endif // GAMESTATE_H
|
#endif // GAMESTATE_H
|
||||||
|
|
Loading…
Reference in a new issue