Use BFS approach for win simulation, not DFS

The original approach here was using depth-limited depth first search,
which was a hacky workaround to avoid exploring a single branch too
deeply. A much saner approach is to just explore in a breadth-first
manner.

This also completely negates the need for depth limitations and we can
instead let the algorithm run until it either finishes or hits the time
limit, as we always want to explore as much depth as we can, without it
slowing down the responsiveness of the UI.
This commit is contained in:
ItsDrike 2024-12-07 20:52:09 +01:00
parent 7cc52f272d
commit b209fbc94b
Signed by: ItsDrike
GPG key ID: FA2745890B7048C0
2 changed files with 161 additions and 130 deletions

View file

@ -1,5 +1,6 @@
#include "gamestate.h"
#include <QDebug>
#include <QQueue>
#include <QSet>
#include <qlist.h>
#include <qqmllist.h>
@ -616,149 +617,180 @@ void GameState::ensureColumnRevealed(int columnId) {
qDebug() << "Revealed card " << col->card()->toString() << " in column " << columnId;
}
std::optional<bool> GameState::canWinThroughSimulation(QSet<QString>& visitedStates, QElapsedTimer timer, int depth) const {
// Check if the game is already won
std::pair<std::optional<bool>, int> GameState::canWinThroughSimulation(QSet<QString>& visitedStates, QElapsedTimer timer) const {
if (m_gameWon)
return true;
return std::make_pair(true, 0); // Already won at depth 0
// Go over all possible moves using BFS
QQueue<std::pair<GameState*, int>> stateQueue; // BFS queue (game state, depth)
// Clone the current state as the root of BFS
GameState* initialState = this->clone();
stateQueue.enqueue({initialState, 0});
visitedStates.insert(initialState->generateStateHash());
int lastDepth = 0;
while (!stateQueue.isEmpty()) {
auto [currentState, depth] = stateQueue.dequeue();
auto currentHash = currentState->generateStateHash();
lastDepth = depth;
// Limit evaluation time (ensures this doesn't block the game)
if (timer.hasExpired(MAX_EVAL_TIME))
return std::nullopt;
if (timer.hasExpired(MAX_EVAL_TIME)) {
delete currentState;
return std::make_pair(std::nullopt, depth);
}
// Limit depth (ensures we don't spend all eval time looking at a single branch.)
// Note that it might be a good idea to switch to a BFS type search, instead of depth
// limiting DFS.
if (depth > MAX_DEPTH)
return std::nullopt;
// Generate the current state hash
QString currentStateHash = generateStateHash();
// Check if the state has already been explored
if (visitedStates.contains(currentStateHash))
return false;
// Mark the current state as visited
visitedStates.insert(currentStateHash);
// Simulate column moves to the foundation
for (int columnId = 0; columnId < m_columns.size(); ++columnId) {
const auto& columnStack = m_columns[columnId];
// Try moves from columns to foundation
for (int columnId = 0; columnId < currentState->m_columns.size(); ++columnId) {
const auto& columnStack = currentState->m_columns[columnId];
if (columnStack.isEmpty())
continue;
const ColumnSlot* topSlot = columnStack.last();
for (int foundationId = 0; foundationId < m_foundation.size(); ++foundationId) {
if (!isFoundationMoveValid(*topSlot->card(), foundationId))
for (int foundationId = 0; foundationId < currentState->m_foundation.size(); ++foundationId) {
if (!currentState->isFoundationMoveValid(*topSlot->card(), foundationId))
continue;
GameState* clonedState = this->clone();
assert(clonedState->moveColumnCardToFoundation(columnId, foundationId));
assert(clonedState->generateStateHash() != generateStateHash());
GameState* newState = currentState->clone();
assert(newState->moveColumnCardToFoundation(columnId, foundationId));
QString stateHash = newState->generateStateHash();
assert(currentHash != stateHash);
auto res = clonedState->canWinThroughSimulation(visitedStates, timer, depth + 1);
delete clonedState;
if (newState->m_gameWon) {
delete newState;
delete currentState;
return std::make_pair(true, depth + 1); // Return depth if game won
}
if (res.value_or(false))
return true;
if (!res.has_value())
return std::nullopt;
if (!visitedStates.contains(stateHash)) {
visitedStates.insert(stateHash);
stateQueue.enqueue({newState, depth + 1});
} else {
delete newState;
}
}
}
// Simulate throwaway pile moves
if (!m_throwawayPile.isEmpty()) {
const PlayingCard* topCard = m_throwawayPile.last();
// Try moves from throwaway pile to foundation/columns
if (!currentState->m_throwawayPile.isEmpty()) {
const PlayingCard* topCard = currentState->m_throwawayPile.last();
// Move to foundation
for (int foundationId = 0; foundationId < m_foundation.size(); ++foundationId) {
if (!isFoundationMoveValid(*topCard, foundationId))
for (int foundationId = 0; foundationId < currentState->m_foundation.size(); ++foundationId) {
if (!currentState->isFoundationMoveValid(*topCard, foundationId))
continue;
GameState* clonedState = this->clone();
assert(clonedState->moveThrownCardToFoundation(foundationId));
assert(clonedState->generateStateHash() != generateStateHash());
GameState* newState = currentState->clone();
assert(newState->moveThrownCardToFoundation(foundationId));
QString stateHash = newState->generateStateHash();
assert(currentHash != stateHash);
auto res = clonedState->canWinThroughSimulation(visitedStates, timer, depth + 1);
delete clonedState;
if (newState->m_gameWon) {
delete newState;
delete currentState;
return std::make_pair(true, depth + 1);
}
if (res.value_or(false))
return true;
if (!res.has_value())
return std::nullopt;
if (!visitedStates.contains(stateHash)) {
visitedStates.insert(stateHash);
stateQueue.enqueue({newState, depth + 1});
} else {
delete newState;
}
}
// Move to columns
for (int toColumnId = 0; toColumnId < m_columns.size(); ++toColumnId) {
if (!isColumnMoveValid(*topCard, toColumnId))
for (int toColumnId = 0; toColumnId < currentState->m_columns.size(); ++toColumnId) {
if (!currentState->isColumnMoveValid(*topCard, toColumnId))
continue;
GameState* clonedState = this->clone();
assert(clonedState->moveThrownCardToColumn(toColumnId));
assert(clonedState->generateStateHash() != generateStateHash());
GameState* newState = currentState->clone();
assert(newState->moveThrownCardToColumn(toColumnId));
QString stateHash = newState->generateStateHash();
assert(currentHash != stateHash);
auto res = clonedState->canWinThroughSimulation(visitedStates, timer, depth + 1);
delete clonedState;
if (newState->m_gameWon) {
delete newState;
delete currentState;
return std::make_pair(true, depth + 1);
}
if (res.value_or(false))
return true;
if (!res.has_value())
return std::nullopt;
if (!visitedStates.contains(stateHash)) {
visitedStates.insert(stateHash);
stateQueue.enqueue({newState, depth + 1});
} else {
delete newState;
}
}
}
// Simulate draw pile move
// Try draw pile move
// (The condition also handles the case where there's only one card in the throwaway pile,
// which means drawing would just result in flipping and re-drawing the same card.)
if (!(m_drawPile.isEmpty() && m_throwawayPile.size() <= 1)) {
GameState* clonedState = this->clone();
assert(clonedState->drawNextCard());
assert(clonedState->generateStateHash() != generateStateHash());
if (!(currentState->m_drawPile.isEmpty() && currentState->m_throwawayPile.size() <= 1)) {
GameState* newState = currentState->clone();
assert(newState->drawNextCard());
QString stateHash = newState->generateStateHash();
assert(currentHash != stateHash);
auto res = clonedState->canWinThroughSimulation(visitedStates, timer, depth + 1);
delete clonedState;
if (res.value_or(false))
return true;
if (!res.has_value())
return std::nullopt;
if (newState->m_gameWon) {
delete newState;
delete currentState;
return std::make_pair(true, depth + 1);
}
// Simulate moves between columns
for (int fromColumnId = 0; fromColumnId < m_columns.size(); ++fromColumnId) {
const auto& fromColumnStack = m_columns[fromColumnId];
if (!visitedStates.contains(stateHash)) {
visitedStates.insert(stateHash);
stateQueue.enqueue({newState, depth + 1});
} else {
delete newState;
}
}
// Try column-to-column moves
for (int fromColumnId = 0; fromColumnId < currentState->m_columns.size(); ++fromColumnId) {
const auto& fromColumnStack = currentState->m_columns[fromColumnId];
if (fromColumnStack.isEmpty())
continue;
for (int toColumnId = 0; toColumnId < m_columns.size(); ++toColumnId) {
for (int toColumnId = 0; toColumnId < currentState->m_columns.size(); ++toColumnId) {
if (fromColumnId == toColumnId)
continue;
// Try all revealed cards in the column
for (int fromCardIndex = 0; fromCardIndex < fromColumnStack.size(); ++fromCardIndex) {
const ColumnSlot* fromSlot = fromColumnStack[fromCardIndex];
if (!fromSlot->isRevealed())
continue;
if (!isColumnMoveValid(*fromSlot->card(), toColumnId))
if (!currentState->isColumnMoveValid(*fromSlot->card(), toColumnId))
continue;
GameState* clonedState = this->clone();
assert(clonedState->moveColumnCardToColumn(fromColumnId, toColumnId, fromCardIndex));
assert(clonedState->generateStateHash() != generateStateHash());
GameState* newState = currentState->clone();
assert(newState->moveColumnCardToColumn(fromColumnId, toColumnId, fromCardIndex));
QString stateHash = newState->generateStateHash();
assert(currentHash != stateHash);
auto res = clonedState->canWinThroughSimulation(visitedStates, timer, depth + 1);
delete clonedState;
if (newState->m_gameWon) {
delete newState;
delete currentState;
return std::make_pair(true, depth + 1);
}
if (res.value_or(false))
return true;
if (!res.has_value())
return std::nullopt;
if (!visitedStates.contains(stateHash)) {
visitedStates.insert(stateHash);
stateQueue.enqueue({newState, depth + 1});
} else {
delete newState;
}
}
}
}
// No paths lead to a win
return false;
delete currentState; // Cleanup current state
}
return std::make_pair(false, lastDepth); // No solution
}
QVariantList GameState::drawPile() const {
@ -797,7 +829,7 @@ bool GameState::gameWon() const {
return m_gameWon;
}
std::optional<bool> GameState::isWinnable() const {
std::pair<std::optional<bool>, int> GameState::isWinnable() const {
qDebug() << "--- Simulating winning scenario ---";
QElapsedTimer timer;
@ -809,7 +841,7 @@ std::optional<bool> GameState::isWinnable() const {
timer.start();
QSet<QString> visitedStates;
std::optional<bool> res = canWinThroughSimulation(visitedStates, timer, 0);
std::pair<std::optional<bool>, int> res = canWinThroughSimulation(visitedStates, timer);
qint64 elapsedTime = timer.elapsed();
// Restore the original message handler

View file

@ -12,7 +12,6 @@
// Limits for checking winnability
#define MAX_EVAL_TIME 100 // Evaluation time limit (ms)
#define MAX_DEPTH 100 // Max moves into the future limit
class GameState : public QObject {
Q_OBJECT
@ -39,7 +38,7 @@ class GameState : public QObject {
Q_INVOKABLE void dealCards();
Q_INVOKABLE void setupWinningDeck();
Q_INVOKABLE bool drawNextCard();
Q_INVOKABLE std::optional<bool> isWinnable() const; // TODO: Implement as Q_PROPERTY instead
Q_INVOKABLE std::pair<std::optional<bool>, int> isWinnable() const; // TODO: Implement as Q_PROPERTY instead
// Manual moves (from X to Y)
Q_INVOKABLE bool moveThrownCardToColumn(int columnId);
@ -80,7 +79,7 @@ class GameState : public QObject {
void ensureColumnRevealed(int columnId);
std::optional<bool> canWinThroughSimulation(QSet<QString>& visitedStates, QElapsedTimer timer, int depth) const;
std::pair<std::optional<bool>, int> canWinThroughSimulation(QSet<QString>& visitedStates, QElapsedTimer timer) const;
};
#endif // GAMESTATE_H