Use BFS approach for win simulation, not DFS

The original approach here was using depth-limited depth first search,
which was a hacky workaround to avoid exploring a single branch too
deeply. A much saner approach is to just explore in a breadth-first
manner.

This also completely negates the need for depth limitations and we can
instead let the algorithm run until it either finishes or hits the time
limit, as we always want to explore as much depth as we can, without it
slowing down the responsiveness of the UI.
This commit is contained in:
ItsDrike 2024-12-07 20:52:09 +01:00
parent 7cc52f272d
commit b209fbc94b
Signed by: ItsDrike
GPG key ID: FA2745890B7048C0
2 changed files with 161 additions and 130 deletions

View file

@ -1,5 +1,6 @@
#include "gamestate.h"
#include <QDebug>
#include <QQueue>
#include <QSet>
#include <qlist.h>
#include <qqmllist.h>
@ -616,149 +617,180 @@ void GameState::ensureColumnRevealed(int columnId) {
qDebug() << "Revealed card " << col->card()->toString() << " in column " << columnId;
}
std::optional<bool> GameState::canWinThroughSimulation(QSet<QString>& visitedStates, QElapsedTimer timer, int depth) const {
// Check if the game is already won
std::pair<std::optional<bool>, int> GameState::canWinThroughSimulation(QSet<QString>& visitedStates, QElapsedTimer timer) const {
if (m_gameWon)
return true;
return std::make_pair(true, 0); // Already won at depth 0
// Limit evaluation time (ensures this doesn't block the game)
if (timer.hasExpired(MAX_EVAL_TIME))
return std::nullopt;
// Go over all possible moves using BFS
// Limit depth (ensures we don't spend all eval time looking at a single branch.)
// Note that it might be a good idea to switch to a BFS type search, instead of depth
// limiting DFS.
if (depth > MAX_DEPTH)
return std::nullopt;
QQueue<std::pair<GameState*, int>> stateQueue; // BFS queue (game state, depth)
// Generate the current state hash
QString currentStateHash = generateStateHash();
// Clone the current state as the root of BFS
GameState* initialState = this->clone();
stateQueue.enqueue({initialState, 0});
visitedStates.insert(initialState->generateStateHash());
// Check if the state has already been explored
if (visitedStates.contains(currentStateHash))
return false;
int lastDepth = 0;
while (!stateQueue.isEmpty()) {
auto [currentState, depth] = stateQueue.dequeue();
auto currentHash = currentState->generateStateHash();
lastDepth = depth;
// Mark the current state as visited
visitedStates.insert(currentStateHash);
// Simulate column moves to the foundation
for (int columnId = 0; columnId < m_columns.size(); ++columnId) {
const auto& columnStack = m_columns[columnId];
if (columnStack.isEmpty())
continue;
const ColumnSlot* topSlot = columnStack.last();
for (int foundationId = 0; foundationId < m_foundation.size(); ++foundationId) {
if (!isFoundationMoveValid(*topSlot->card(), foundationId))
continue;
GameState* clonedState = this->clone();
assert(clonedState->moveColumnCardToFoundation(columnId, foundationId));
assert(clonedState->generateStateHash() != generateStateHash());
auto res = clonedState->canWinThroughSimulation(visitedStates, timer, depth + 1);
delete clonedState;
if (res.value_or(false))
return true;
if (!res.has_value())
return std::nullopt;
}
}
// Simulate throwaway pile moves
if (!m_throwawayPile.isEmpty()) {
const PlayingCard* topCard = m_throwawayPile.last();
// Move to foundation
for (int foundationId = 0; foundationId < m_foundation.size(); ++foundationId) {
if (!isFoundationMoveValid(*topCard, foundationId))
continue;
GameState* clonedState = this->clone();
assert(clonedState->moveThrownCardToFoundation(foundationId));
assert(clonedState->generateStateHash() != generateStateHash());
auto res = clonedState->canWinThroughSimulation(visitedStates, timer, depth + 1);
delete clonedState;
if (res.value_or(false))
return true;
if (!res.has_value())
return std::nullopt;
// Limit evaluation time (ensures this doesn't block the game)
if (timer.hasExpired(MAX_EVAL_TIME)) {
delete currentState;
return std::make_pair(std::nullopt, depth);
}
// Move to columns
for (int toColumnId = 0; toColumnId < m_columns.size(); ++toColumnId) {
if (!isColumnMoveValid(*topCard, toColumnId))
// Try moves from columns to foundation
for (int columnId = 0; columnId < currentState->m_columns.size(); ++columnId) {
const auto& columnStack = currentState->m_columns[columnId];
if (columnStack.isEmpty())
continue;
GameState* clonedState = this->clone();
assert(clonedState->moveThrownCardToColumn(toColumnId));
assert(clonedState->generateStateHash() != generateStateHash());
auto res = clonedState->canWinThroughSimulation(visitedStates, timer, depth + 1);
delete clonedState;
if (res.value_or(false))
return true;
if (!res.has_value())
return std::nullopt;
}
}
// Simulate draw pile move
// (The condition also handles the case where there's only one card in the throwaway pile,
// which means drawing would just result in flipping and re-drawing the same card.)
if (!(m_drawPile.isEmpty() && m_throwawayPile.size() <= 1)) {
GameState* clonedState = this->clone();
assert(clonedState->drawNextCard());
assert(clonedState->generateStateHash() != generateStateHash());
auto res = clonedState->canWinThroughSimulation(visitedStates, timer, depth + 1);
delete clonedState;
if (res.value_or(false))
return true;
if (!res.has_value())
return std::nullopt;
}
// Simulate moves between columns
for (int fromColumnId = 0; fromColumnId < m_columns.size(); ++fromColumnId) {
const auto& fromColumnStack = m_columns[fromColumnId];
if (fromColumnStack.isEmpty())
continue;
for (int toColumnId = 0; toColumnId < m_columns.size(); ++toColumnId) {
if (fromColumnId == toColumnId)
continue;
// Try all revealed cards in the column
for (int fromCardIndex = 0; fromCardIndex < fromColumnStack.size(); ++fromCardIndex) {
const ColumnSlot* fromSlot = fromColumnStack[fromCardIndex];
if (!fromSlot->isRevealed())
continue;
if (!isColumnMoveValid(*fromSlot->card(), toColumnId))
const ColumnSlot* topSlot = columnStack.last();
for (int foundationId = 0; foundationId < currentState->m_foundation.size(); ++foundationId) {
if (!currentState->isFoundationMoveValid(*topSlot->card(), foundationId))
continue;
GameState* clonedState = this->clone();
assert(clonedState->moveColumnCardToColumn(fromColumnId, toColumnId, fromCardIndex));
assert(clonedState->generateStateHash() != generateStateHash());
GameState* newState = currentState->clone();
assert(newState->moveColumnCardToFoundation(columnId, foundationId));
QString stateHash = newState->generateStateHash();
assert(currentHash != stateHash);
auto res = clonedState->canWinThroughSimulation(visitedStates, timer, depth + 1);
delete clonedState;
if (newState->m_gameWon) {
delete newState;
delete currentState;
return std::make_pair(true, depth + 1); // Return depth if game won
}
if (res.value_or(false))
return true;
if (!res.has_value())
return std::nullopt;
if (!visitedStates.contains(stateHash)) {
visitedStates.insert(stateHash);
stateQueue.enqueue({newState, depth + 1});
} else {
delete newState;
}
}
}
// Try moves from throwaway pile to foundation/columns
if (!currentState->m_throwawayPile.isEmpty()) {
const PlayingCard* topCard = currentState->m_throwawayPile.last();
// Move to foundation
for (int foundationId = 0; foundationId < currentState->m_foundation.size(); ++foundationId) {
if (!currentState->isFoundationMoveValid(*topCard, foundationId))
continue;
GameState* newState = currentState->clone();
assert(newState->moveThrownCardToFoundation(foundationId));
QString stateHash = newState->generateStateHash();
assert(currentHash != stateHash);
if (newState->m_gameWon) {
delete newState;
delete currentState;
return std::make_pair(true, depth + 1);
}
if (!visitedStates.contains(stateHash)) {
visitedStates.insert(stateHash);
stateQueue.enqueue({newState, depth + 1});
} else {
delete newState;
}
}
// Move to columns
for (int toColumnId = 0; toColumnId < currentState->m_columns.size(); ++toColumnId) {
if (!currentState->isColumnMoveValid(*topCard, toColumnId))
continue;
GameState* newState = currentState->clone();
assert(newState->moveThrownCardToColumn(toColumnId));
QString stateHash = newState->generateStateHash();
assert(currentHash != stateHash);
if (newState->m_gameWon) {
delete newState;
delete currentState;
return std::make_pair(true, depth + 1);
}
if (!visitedStates.contains(stateHash)) {
visitedStates.insert(stateHash);
stateQueue.enqueue({newState, depth + 1});
} else {
delete newState;
}
}
}
// Try draw pile move
// (The condition also handles the case where there's only one card in the throwaway pile,
// which means drawing would just result in flipping and re-drawing the same card.)
if (!(currentState->m_drawPile.isEmpty() && currentState->m_throwawayPile.size() <= 1)) {
GameState* newState = currentState->clone();
assert(newState->drawNextCard());
QString stateHash = newState->generateStateHash();
assert(currentHash != stateHash);
if (newState->m_gameWon) {
delete newState;
delete currentState;
return std::make_pair(true, depth + 1);
}
if (!visitedStates.contains(stateHash)) {
visitedStates.insert(stateHash);
stateQueue.enqueue({newState, depth + 1});
} else {
delete newState;
}
}
// Try column-to-column moves
for (int fromColumnId = 0; fromColumnId < currentState->m_columns.size(); ++fromColumnId) {
const auto& fromColumnStack = currentState->m_columns[fromColumnId];
if (fromColumnStack.isEmpty())
continue;
for (int toColumnId = 0; toColumnId < currentState->m_columns.size(); ++toColumnId) {
if (fromColumnId == toColumnId)
continue;
for (int fromCardIndex = 0; fromCardIndex < fromColumnStack.size(); ++fromCardIndex) {
const ColumnSlot* fromSlot = fromColumnStack[fromCardIndex];
if (!fromSlot->isRevealed())
continue;
if (!currentState->isColumnMoveValid(*fromSlot->card(), toColumnId))
continue;
GameState* newState = currentState->clone();
assert(newState->moveColumnCardToColumn(fromColumnId, toColumnId, fromCardIndex));
QString stateHash = newState->generateStateHash();
assert(currentHash != stateHash);
if (newState->m_gameWon) {
delete newState;
delete currentState;
return std::make_pair(true, depth + 1);
}
if (!visitedStates.contains(stateHash)) {
visitedStates.insert(stateHash);
stateQueue.enqueue({newState, depth + 1});
} else {
delete newState;
}
}
}
}
delete currentState; // Cleanup current state
}
// No paths lead to a win
return false;
return std::make_pair(false, lastDepth); // No solution
}
QVariantList GameState::drawPile() const {
@ -797,7 +829,7 @@ bool GameState::gameWon() const {
return m_gameWon;
}
std::optional<bool> GameState::isWinnable() const {
std::pair<std::optional<bool>, int> GameState::isWinnable() const {
qDebug() << "--- Simulating winning scenario ---";
QElapsedTimer timer;
@ -809,7 +841,7 @@ std::optional<bool> GameState::isWinnable() const {
timer.start();
QSet<QString> visitedStates;
std::optional<bool> res = canWinThroughSimulation(visitedStates, timer, 0);
std::pair<std::optional<bool>, int> res = canWinThroughSimulation(visitedStates, timer);
qint64 elapsedTime = timer.elapsed();
// Restore the original message handler

View file

@ -12,7 +12,6 @@
// Limits for checking winnability
#define MAX_EVAL_TIME 100 // Evaluation time limit (ms)
#define MAX_DEPTH 100 // Max moves into the future limit
class GameState : public QObject {
Q_OBJECT
@ -39,7 +38,7 @@ class GameState : public QObject {
Q_INVOKABLE void dealCards();
Q_INVOKABLE void setupWinningDeck();
Q_INVOKABLE bool drawNextCard();
Q_INVOKABLE std::optional<bool> isWinnable() const; // TODO: Implement as Q_PROPERTY instead
Q_INVOKABLE std::pair<std::optional<bool>, int> isWinnable() const; // TODO: Implement as Q_PROPERTY instead
// Manual moves (from X to Y)
Q_INVOKABLE bool moveThrownCardToColumn(int columnId);
@ -80,7 +79,7 @@ class GameState : public QObject {
void ensureColumnRevealed(int columnId);
std::optional<bool> canWinThroughSimulation(QSet<QString>& visitedStates, QElapsedTimer timer, int depth) const;
std::pair<std::optional<bool>, int> canWinThroughSimulation(QSet<QString>& visitedStates, QElapsedTimer timer) const;
};
#endif // GAMESTATE_H